Sains Malaysiana 53(10)(2024): 3405-3416

http://doi.org/10.17576/jsm-2024-5310-14

 

Penghasilan Lipid Kaya Asid Dokosaheksaenoik (DHA) oleh Aurantiochytrium sp. SW1 menggunakan Sisa Kulit Nanas sebagai Sumber Karbon Alternatif

(Docosahexaenoic Acid (DHA)-Rich Lipid Production by Aurantiochytrium sp. SW1 using Pineapple Peel Waste as an Alternative Carbon Source)

 

AIMAN DANIAL MOHD ZAINI1, ASVITRA PREVENA PALANIANDY1, MUHAMMAD ZIYAD ISMAIL2, NURUL AQILAH MOHD ZAINI1, NURFATIMAH MOHD THANI1, MOHAMAD YUSOF MASKAT1, AIDIL ABDUL HAMID2 & MOHAMED YUSUF MOHAMED NAZIR1,3,*

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Biological Sciences & Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 29 February 2024/Accepted: 28 August 2024

 

Abstrak

Thraustokaitrid seperti Aurantiochytrium sp. telah menarik perhatian penyelidik dan industri disebabkan kebolehannya untuk menghasilkan asid lemak politaktepu (PUFA) bernilai tinggi terutamanya asid dokosaheksaenoik (DHA, C22:6 ω-3). Namun begitu, keperluan penggunaan substrat yang mahal khususnya sumber karbon tulen semasa proses pengkulturan telah menyumbang kepada peningkatan kos pengkomersialan DHA daripada thraustokaitrid. Oleh itu, dalam kajian ini, potensi penggunaan sisa kulit nanas (SKN) yang merupakan antara sisa utama industri pertanian di Malaysia sebagai sumber karbon alternatif yang lebih murah untuk penghasilan DHA daripada Aurantiochytrium sp. SW1 telah dikaji. Memandangkan SKN mengandungi lignin, selulosa dan hemiselulosa yang agak kompleks, kaedah perawatan autoklaf, berasid dan beralkali pada kepekatan berbeza telah ditentukan bagi mendapatkan gula jumlah yang optimum daripada SKN. Hasil menunjukkan perawatan autoklaf secara signifikan (p<0.05) menghasilkan hidrolisat dengan kepekatan gula tertinggi (39.6 ± 1.98 g/L) berbanding dengan perawatan berasid dan alkali yang masing-masing dapat mengekstrak dalam julat 31-38 g/L gula jumlah. Kemudian, kebolehan Aurantiochytrium sp. SW1 untuk menggunakan kesemua hidrolisat SKN sebagai sumber karbon alternatif dibandingkan. Didapati, penggunaan hidrolisat SKN dengan rawatan 100 mM H2SO4 bersama nutrien tambahan secara signifikan (p<0.05) menghasilkan biojisim tertinggi (7.74 g/L ± 0.39) manakala kandungan lipid terbaik (60.7% ± 3.04) terhasil apabila SW1 dikulturkan menggunakan hidrolisat SKN dengan rawatan autoklaf tanpa penambahan nutrien. Penghasilan DHA yang maksimum (0.68 ± 0.034 g/L) dicapai apabila Aurantiochytrium sp. SW1 dikultur menggunakan hidrolisat SKN dengan rawatan 100 mM H2SO4 bersama nutrien tambahan yang mana 10-35% lebih tinggi jika dibandingkan dengan penghasilan menggunakan hidrolisat SKN yang lain. Kajian ini dapat menjadi asas ke arah penghasilan DHA yang lebih murah daripada thraustokaitrid dengan menggunakan SKN sebagai sumber karbon alternatif.

 

Kata kunci: Asid dokosaheksaenoik; Aurantiochytrium sp.; sisa kulit nanas; teknik rawatan

 

Abstract

Thraustochytrids such as Aurantiochytrium sp. have drawn the attention of researchers and industries due to their ability to produce high-value polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA, C22:6 ω-3) from its total fatty acids. However, the requirement for expensive substrates, particularly refined carbon sources during the cultivation process, has contributed to the increased commercialization costs of DHA from thraustochytrids. Therefore, in this study, the potential use of pineapple peel waste (PPW), which is among the major agricultural wastes in Malaysia, as a cheaper alternative carbon source for DHA production from Aurantiochytrium sp. SW1 was investigated. Considering that PPW contains relatively complex lignin, cellulose, and hemicellulose, autoclave, acidic, and alkaline treatment methods at different concentrations were examined to obtain the optimal sugar content from PPW. The results showed that autoclave treatment yielded the highest sugar concentration (39.6 ± 0.39 g/L) significantly (p<0.05), compared to acidic and alkaline treatments, each of which could extract sugar within the range of 31-38 g/L. Subsequently, the ability of Aurantiochytrium sp. SW1 to utilize all PPW hydrolysates as a sole carbon source was compared. It was found that the use of PPW hydrolysate with 100 mM H2SO4 treatment along with additional nutrients produced the maximum biomass (7.74 ± 0.39 g/L) significantly (p<0.05), and outstanding lipid content (60.7 ± 3.04%) was obtained when SW1 was cultured using autoclaved PPW hydrolysate without nutrient supplementation. The maximum DHA production (0.68 ± 0.034 g/L) was achieved when Aurantiochytrium sp. SW1 was cultured using PPW hydrolysate with 100 mM H2SO4 treatment along with additional nutrients, which was 10-35% higher compared to production using other PPW hydrolysates. This study could serve as a foundation towards cheaper DHA production from thraustochytrids using PPW as an alternative carbon source.

 

Keywords: Aurantiochytrium sp.; docosahexaenoic acids; pineapple peel waste; treatment methods

 

REFERENCES

Abdul Rahman, S.N.S., Kalil, M.S. & Hamid, A.A. 2021. Production of docosahexaenoic acid, DHA using different modes of cultivation by Aurantiochytrium sp. SW1. Sains Malaysiana 50(7): 1947–1957.

Abdullah, A. & Mat, H. 2008. Characterisation of solid and liquid pineapple waste. Reaktor 12(1): 48-52.

Amin, F.R., Khalid, H., Zhang, H., Rahman, S.U., Zhang, R., Liu, G. & Chen, C. 2017. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7: 72.

Association of Official Analytical Chemists (AOAC). 2005. Official methods of analysis of the association of official analytical chemists. Washington DC: AOAC.

Auma, K., Hamid, A.A. & Yusoff, W.M.W. 2018. Effect of nitrogen sources on biomass, lipid and docosahexaenoic acid production by Aurantiochytrium sp. SW1. AIP Conference Proceedings 1940(1): 020065.

Awasthi, M.K., Azelee, N.I.W., Ramli, A.N.M., Rashid, S.A., Manas, N.H.A., Dailin, D.J., Illias, R.M., Rajagopal, R., Chang, S.W., Zhang, Z. & Ravindran, B. 2022. Microbial biotechnology approaches for conversion of pineapple waste in to emerging source of healthy food for sustainable environment. International Journal of Food Microbiology 373: 109714.

Burja, A.M., Radianingtyas, H., Windust, A. & Barrow, C.J. 2006. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: Screening of strains and optimization of Omega-3 production.  Applied Microbiology and Biotechnology 72(6): 1161-1169.

Canhada, S., Castro, K., Schweigert Perry, I. & Luft, V.C. 2018. Omega-3 fatty acids’ supplementation in Alzheimer’s disease: A systematic review. Nutr. Neurosci. 21: 529-538.

Cheng, Y.S., Zheng, Y., Yu, C.W., Dooley, T.M., Jenkins, B.M. & Vandergheynst, J.S. 2010. Evaluation of high solids alkaline pretreatment of rice straw. Applied Biochemistry and Biotechnology 162(6): 1768–1784.

Colombo, S.M., Rodgers, T.F., Diamond, M.L., Bazinet, R.P. & Arts, M.T. 2020. Projected declines in global DHA availability for human consumption as a result of global warming. Ambio. 49(4): 865-880.

Djuricic, I. & Calder, P.C. 2021. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 13(7): 2421.

Du, F., Wang, Y.Z., Xu, Y.S., Shi, T.Q., Liu, W.Z., Sun, X.M. & Huang, H. 2021. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnology Advances 48: 107725.

FAO. 2019. Major tropical fruits - Preliminary market results 2019. Rome: 3–4. Diakses pada 10 Mei 2024.

Folch, J., Lees, M. & Sloane Stanley, G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226(1): 497-509.

Jakobsen, A.N. 2008. Compatible solutes and docosahexaenoic acid accumulation of thraustochytrids of the Aurantiochytrium group. PhD Thesis. Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology (Unpublished).

Kim, J.S., Lee, Y.Y. & Kim, T.H. 2016. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology 199: 42-48.

Lembaga Perindustrian Nanas Malaysia. 2022. Data Statistik Nanas 2022.

Levey, D.J., Bissell, H. & O’Keefe, S.F. 2000. Conversion of nitrogen to protein and amino acids in wild fruits. Journal of Chemical Ecology 26: 1749-1763.

Lorenci Woiciechowski, A., Dalmas Neto, C.J., Porto de Souza Vandenberghe, L., de Carvalho Neto, D.P., Novak Sydney, A.C., Letti, L.A.J., Karp, S.G., Zevallos Torres, L.A. & Soccol, C.R. 2020. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance - Conventional processing and recent advances. Bioresource Technology 304: 122848.

Manikan, V., Kalil, M.S. & Hamid, A.A. 2015. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid. Scientific Reports 5: 8611.

Manikan, V., Nazir, M.Y.M., Kalil, M.S., Isa, M.H.M., Kader, A.J.A., Yusoff, W.M.W. & Hamid, A.A. 2015. A new strain of docosahexaenoic acid producing microalga from Malaysian coastal waters. Algal Research 9: 40-47.

Morais, D.R., Rotta, E.M., Sargi, S.C., Bonafe, E.G., Suzuki, R.M., Souza, N.E., Matsushita, M. & Visentainer, J.V. 2016. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. Journal of the Brazilian Chemical Society 28(2): 308-318.

Nazir, Y., Shuib, S., Kalil, M.S., Song, Y. & Hamid, A.A. 2018. Optimization of culture conditions for enhanced growth, lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium SW1 by response surface methodology. Scientific Reports 8: 8909.

Oliver, L., Dietrich, T., Marañón, I., Villarán, M.C. & Barrio, R.J. 2020. Producing Omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market. Resources 9(12): 148.

Owoeye, T.F., Akinlabu, D.K., Ajayi, O.O., Afolalu, S.A., Popoola, J.O. & Ajani, O.O. 2022. Phytochemical constituents and proximate analysis of dry pineapple peels. IOP Conference Series: Earth and Environmental Science 993: 012027.

Patel, A., Karageorgou, D., Katapodis, P., Sharma, A., Rova, U., Christakopoulos, P. & Matsakas, L. 2021. Bioprospecting of thraustochytrids for Omega-3 fatty acids: A sustainable approach to reduce dependency on animal sources. Trends in Food Science & Technology 115: 433-444.

Pathanibul, P. & Hongkulsup, C. 2021. Production of succinic acid from pineapple peel waste. https://doi.org/10.21203/rs.3.rs-474844/v1

Pawar, P.R., Velani, S., Kumari, S., Lali, A.M. & Prakash, G. 2021. Isolation and optimization of a novel thraustochytrid strain for DHA rich and astaxanthin comprising biomass as aquafeed supplement. 3 Biotech 11: 71.

Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11): 807-815.

Ravindran, B., Karmegam, N., Yuvaraj, A., Thangaraj, R., Chang, S.W., Zhang, Z. & Kumar Awasthi, M. 2021. Cleaner production of agriculturally valuable benignant materials from industry generated bio-wastes: A review. Bioresource Technology 320(PA): 124281.

Rivera, A.M.P., Toro, C.R., Londoño, L., Bolivar, G., Ascacio, J.A. & Aguilar, C.N. 2023. Bioprocessing of pineapple waste biomass for sustainable production of bioactive compounds with high antioxidant activity. Journal of Food Measurement and Characterization 17(1): 586-606.

Sukruansuwan, V. & Napathorn, S.C. 2018. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnology for Biofuels and Bioproducts 11: 202.

Zain, N.A., Aziman, S.N., Suhaimi, M.S. & Idris, A. 2021. Optimization of L(+) lactic acid production from solid pineapple waste (SPW) by Rhizopus oryzae NRRL 395. Journal of Polymers and the Environment 29: 230-249.

Zakaria, N.A., Rahman, R.A., Abang Zaidel, D.N., Dailin, D.J. & Jusoh, M. 2021. Microwave-assisted extraction of pectin from pineapple peel. Malaysian Journal of Fundamental and Applied Sciences 17(1): 33-38.

Zhang, X., Lin, L., Chen, Z., Zhang, J., Wang, X. & Tao, N. 2020. Characterization of refined fish oil from small fish in Mauritania. Aquaculture and Fisheries 7(6): 639-646.

 

*Corresponding author; email: yusufnazir@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next